If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10y+20-10y^2=0
a = -10; b = -10; c = +20;
Δ = b2-4ac
Δ = -102-4·(-10)·20
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-30}{2*-10}=\frac{-20}{-20} =1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+30}{2*-10}=\frac{40}{-20} =-2 $
| 2x^2+5x-97=0 | | 18=-5+7d | | X=-20+5x | | 5(2x+35)=3(x+14) | | 3a-5/4-4a=3-(a-3)/2 | | 10x+10=8x+18 | | 17x+17=x+81 | | 17x+17=x+8 | | 75+3n=3n+7n | | 75+3n=3+7n | | 4t^2-8t-4=0 | | 75+3n=7+3n | | 1.7=k+1.4 | | ((2a+3)/4)+((a-1)/3))=2 | | x+3/6=4x/3=4 | | I^2+a=1 | | 1,8x+32=100 | | 2a+18a=36 | | 3(2m-3)+5=20 | | 11x−2 = −8x+8 | | 11x−2=−8x+8 | | B^2+13+14b=0 | | 30+4x+x=125 | | 6a+2=4a+12 | | 6a+2 = 4a+12 | | 7b+13=11+3b | | 7z+15=6+4z | | x+x-7=41 | | 3x+(4x17)=7 | | 2x+7/3=4x+12/5 | | x2+9x-8=2x | | 4x–5=45 |